GPM

and

Weather Forecasting

Peter Bauer

<u>European Centre for Medium-range</u> <u>Weather Forecasts</u>

Reading, UK

ECMWF

- An independent intergovernmental organisation; established in 1975
- 20 Member States, 14 Co-operating States, 45 M£ annual budget (staff:HPC)
- 270 staff (110 RD, 55 CD, 65 FD, 40 AD)

	Forecast/Analysis	Number of members	Horizontal resolution	Vertical levels and pressure at model top (hPa)	Perturbation models	IFS cycle
HRES	Forecast 0—10 days	1	T1279/16 km	L137/0.01	No	Latest
ENS	Forecast 0—10 days	51	T639/32 km	L91/0.01	Yes (in analysis and model physics)	Latest
	Forecast 10–32 days		T319/64 km			
4DVAR	Analysis	1	T1279/16 km (T255 inner loops)	L137/0.01	No	Latest
EDA	Analysis	11	T399/50 km (T159 inner loops)	L137/0.01	Yes (in observations and model physics)	Latest
SEAS	Forecast 0—13 months	51	T255/80 km	L91/0.01	Yes (in analysis and model physics)	2011 version
ERA	Analysis	1	T255/80 km	L60/0.1	No	2006 version
ВС	Forecast 0—90 hours, hourly output	1	T1279/16 km	L137/0.01	No	Latest

- No regional systems
- No warnings issued
- Only limited value adding applied to forecast model output

Assimilated satellite data

... and GPM

Data assimilation system

Data assimilation system

- 95% of all data is assimilated as radiances (i.e. level-1)
- 100% of cloud/precipitation satellite data is assimilated as radiances (i.e. level-1*)
- Cloud/precipitation assimilation:
 - Operational since 2005 with major upgrades in 2009, 2011, 2013
 - 8 years of development time x 2-3 FTE

Verification of model forecasts with TRMM

GPM Applications WS Weather Forecasting PB 11/2013 © ECMWF

Verification of model forecasts with TRMM

Data impact on forecasts: Average

- AMSU-A currently most important single observing system (5 satellites)
- = fct. (data volume, single observation impact, synergy with others)
- Microwave imagers most important instrument for lower tropospheric moisture!

Data impact on forecasts: Case North Atlantic storm

Data impact on forecasts: Case North Atlantic storm

Sandy

TODAY | Aired on October 31, 2012

British meteorologists predicted Sandy's course

When scientists at the European Weather Centre in England saw a cold front from the north joining with a hurricane to send it into the northeast, they'd rarely seen anything like it. Without their forecasts over a week ahead of time, the human outcome could have been worse. NBC's Keir Simmons reports.

Share This:

http://intra.ecmwf.int/publications/cms/get/weekly_news/2012-11-02

PB 11/2013 Weather Forecasting

Data impact on forecasts: Sandy

Model impact on forecasts: Sandy

GPM Applications WS Weather Forecasting

PB 11/2013

Future

NWP systems:

- Improved hybrid data assimilation to produce optimal analysis (initial state) + uncertainties
- Resolutions of 10 km in 2015, 5 km in 2020, 2.5 km in 2025
- Coupling with ocean/sea-ice/atmospheric composition (model and assimilation)
- Better characterisation of observation + model errors
- Computer codes that scale on massively parallel HPC

Future

NWP systems:

- Improved hybrid data assimilation to produce optimal analysis (initial state) + uncertainties
- Resolutions of 10 km in 2015, 5 km in 2020, 2.5 km in 2025
- Coupling with ocean/sea-ice/atmospheric composition (model and assimilation)
- Better characterisation of observation + model errors
- Computer codes that scale on massively parallel HPC

Satellite data:

- Bulk of data as level-1 product (radiance, reflectivity, backscatter x-section)
- Increased usage of:
 - Cloud/precipitation/water vapour
 - Aerosol/composition
 - Land surface
 - Snow/ice

GPM Applications WS Weather Forecasting PB 11/2013 © ECMWF

Future

NWP systems:

- Improved hybrid data assimilation to produce optimal analysis (initial state) + uncertainties
- Resolutions of 10 km in 2015, 5 km in 2020, 2.5 km in 2025
- Coupling with ocean/sea-ice/atmospheric composition (model and assimilation)
- Better characterisation of observation + model errors
- Computer codes that scale on massively parallel HPC

Satellite data:

- Bulk of data as level-1 product (radiance, reflectivity, backscatter x-section)
- Increased usage of:
 - Cloud/precipitation/water vapour
 - Aerosol/composition
 - Land surface
 - Snow/ice

Requirements:

- Continuity of core observation types (sounders, imagers) with sufficient global coverage
- Enhanced **modelling** capabilities for process representation
- Enhanced **observational** capabilities for process studies and verification
- Enhanced data assimilation capabilities for optimal data exploitation
- → Only combination of the above will produce return on investment!

GPM Applications WS Weather Forecasting PB 11/2013 © ECMWF